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Abstract 

 
This short article summarizes UCL’s entry for 
the PASCAL Classifying Heart Sounds 
Challenge. The approach focused on the creation 
of novel segmentation and classification methods 
based on wavelet decomposition and 
spectrogram analysis. 

1 Introduction 
The Classifying Heart Sounds Challenge aims to achieve 
preliminary screening of cardiac pathologies by analyzing 
the features of heartbeat collected from digital 
stethoscope and mobile devices. 
According to the World Health Organization, 
cardiovascular diseases (CVDs) are the number one cause 
of death globally: more people die annually from CVDs 
than from any other cause. An estimated 17.1 million 
people died from CVDs in 2004, representing 29% of all 
global deaths. Of these deaths, an estimated 7.2 million 
were due to coronary heart disease [1]. Any method 
which can help to detect signs of heart disease could 
therefore have a significant impact on world health. 
The challenge is to produce methods to do exactly that. 
Specifically, we are interested in creating the first level of 
screening of cardiac pathologies both in a Hospital 
environment by a doctor (using a digital stethoscope) and 
at home by the patient (using a mobile device). 
The problem is of particular interest to machine learning 
researchers as it involves classification of audio sample 
data, where distinguishing between classes of interest is 
non-trivial. Data is gathered in real-world situations and 
frequently contains background noise of every 
conceivable type. The differences between heart sounds 
corresponding to different heart symptoms can also be 
extremely subtle and challenging to separate. Success in 
classifying this form of data requires extremely robust 
classifiers. Despite its medical significance, to date this is 
a relatively unexplored application for machine learning.  
The challenge consists of two tasks: Heart Sound 
Segmentation and Heart Sound classification. The first 

task is to produce a method that can locate the first heart 
sound S1(lub) and the second heart sound S2(dub) and 
segment Normal audio files from two datasets A and B 
(described later). The second task aims at classifying the 
heartbeat audio into one of the four categories for Dataset 
A (Normal, Murmur, Extra Heart Sound and Artifact) and 
three categories for Dataset B (Normal, Murmur and 
Extrasystole). 

2 Background 
Some attempts to segment phonocardiographic (PCG) 
signals have been reported in the literature. The majority 
of them exploit electrocardiogram (ECG) signals or/and 
carotid pulse data. For example, Groch presented a 
solution where the segmentation was based on the time 
domain characteristics of the signal [2]. Strunic extracted 
signals on certain band to reduce anomalies and then set a 
amplitude threshold to pick out the spikes and realize the 
segmentation [3]. To achieve classification, Karraz 
extracted the QRS complex from the signal as features 
and applied them into a Neural Network Classifier based 
on a Bayesian framework. Spencer integrated all the 
segmented heart cycles into one average heart cycle and 
used it to train the Artificial Neural Network (ANN) to 
classify heartbeat into Normal, Systolic Murmur caused 
by Mitral Regurgitation (MR), Systolic Murmur caused 
by Aortic Stenosis (AS) and Diastole Murmur caused by 
Aortic Regurgitation (AR) [3]. According to his result, 
when processing simulated heart sounds, the accuracy and 
sensitivity of ANN could be as high as 76±6.1% and 
89.7±5.9% respectively. The accuracy drops to 48.7±
12.7% when he used data collected by an electronic 
stethoscope with a duration of about 5 seconds. In 
attempts to apply this system to the challenge datasets, for 
most cases it reported error because it could not deal with 
audio files of largely different lengths. When provided 
with selected audio files of similar length the system was 
still unable to differentiate between heartbeats and 
background noise in most cases. Kampouraki used 
support vector machines (SVMs) to classify ECG 
recordings [5]. However, the relatively clean ECG or 
simulated heart sounds of similar length are very 
dissimilar to real life data which often is of varying 



durations and with excessive background noise. Under 
such circumstances, the differentiation among different 
subtle heart symptoms can be extremely challenging. To 
cater to demands from such data, Liang chose Chebyshev 
type I low-pass filter combined with Shannon energy to 
attenuate noise and make the findings of low intensity 
sounds, namely heart beats, easier[6]. 

3 Data sets 
Two datasets were provided for the challenge. Dataset A 
comprises data crowd-sourced from the general public via 
the iStethoscope Pro iPhone app. Dataset B comprises 
data collected from a clinical trial in hospitals using the 
digital stethoscope DigiScope [1].  
The audio files are of varying lengths, between 1 second 
and 30 seconds (some have been clipped to reduce 
excessive noise and provide the salient fragment of the 
sound). Most information in heart sounds is contained in 
the low frequency components, with noise in the higher 
frequencies. It is common to apply a low-pass filter at 195 
Hz. Fast Fourier transforms are also likely to provide 
useful information about volume and frequency over time. 
More domain-specific knowledge about the difference 
between the categories of sounds is provided below. 

3.1 Normal Category 
In the Normal category there are normal, healthy heart 
sounds. These may contain noise in the final second of the 
recording as the device is removed from the body. They 
may contain a variety of background noises (from traffic 
to radios). They may also contain occasional random 
noise corresponding to breathing, or brushing the 
microphone against clothing or skin. A normal heart 
sound has a clear “lub dub, lub dub” pattern, with the time 
from “lub” to “dub” shorter than the time from “dub” to 
the next “lub” (when the heart rate is less than 140 beats 
per minute). Note the temporal description of “lub” and 
“dub” locations over time in the following illustration: 
…lub………dub……………lub………dub……………  

In medicine we call the lub sound "S1" and the dub sound 
"S2". Most normal heart rates at rest will be between 
about 60 and 100 beats (‘lub dub’s) per minute. However, 
note that since the data may have been collected from 
children or adults in calm or excited states, the heart rates 
in the data may vary from 40 to 140 beats or higher per 
minute. Dataset B also contains noisy_normal data - 
normal data which includes a substantial amount of 
background noise or distortion.  

3.2 Murmur Category 
Heart murmurs sound as though there is a “whooshing, 
roaring, rumbling, or turbulent fluid” noise in one of two 
temporal locations: (1) between “lub” and “dub”, or (2) 
between “dub” and “lub”. They can be a symptom of 
many heart disorders, some serious. There will still be a 
“lub” and a “dub”. One of the things that confuses non-
medically trained people is that murmurs happen between 

lub and dub or between dub and lub; not on lub and not 
on dub. Below, we illustrate with an asterisk* at the 
locations a murmur may appear: 
…lub…****…dub……………lub…****…dub 

or 
…lub………dub…******…lub………dub…******…lub……dub 
Dataset B also contains noisy_murmur data - murmur data 
which includes a substantial amount of background noise 
or distortion.  

3.3 Extra Heart Sound Category (Dataset A) 
Extra heart sounds can be identified because there is an 
additional sound, e.g. a “lub-lub dub” or a “lub dub-dub”. 
An extra heart sound may not be a sign of disease.  
However, in some situations it is an important sign of 
disease, which if detected early could help a person.  The 
extra heart sound is important to be able to detect as it 
cannot be detected by ultrasound very well. Below, note 
the temporal description of the extra heart sounds: 
…lub.lub………dub………………lub.lub………dub……………  

or 
…lub………dub.dub…………………lub………dub.dub 

3.4 Artifact Category (Dataset A) 
In the Artifact category there are a wide range of different 
sounds, including feedback squeals and echoes, speech, 
music and noise. There are usually no discernable heart 
sounds, and thus little or no temporal periodicity at 
frequencies below 195 Hz. This category is the most 
different from the others. It is important to be able to 
distinguish this category from the other three categories, 
so that someone gathering the data can be instructed to try 
again. 

3.5 Extrasystole Category (Dataset B) 
Extrasystole sounds may appear occasionally and can be 
identified because there is a heart sound that is out of 
rhythm involving extra or skipped heartbeats, e.g. a “lub-
lub dub” or a “lub dub-dub”. (This is not the same as an 
extra heart sound as the event is not regularly occuring.) 
An extrasystole may not be a sign of disease. It can 
happen normally in an adult and can be very common in 
children. However, in some situations extrasystoles can 
be caused by heart diseases. If these diseases are detected 
earlier, then treatment is likely to be more effective. 
Below, note the temporal description of the extra heart 
sounds: 
……lub………dub…………………lub…………………dub……………lub.lub
……………dub……  

or 
…lub………dub………………………lub…………………dub.dub…………………
lub……………dub…… 

 



4 Heart Sound Segmentation 
In Task 1 we try to produce a method which can locate 
the heartbeat and determine the sequence of S1 and S2 in 
the normal audio clips in Dataset A and Dataset B. Before 
segmentation, the signals are first de-noised using a 
combination of Short Time Fourier Transformation and 
wavelet [6][7]. 

Step1: Decompose the original signal using wavelet 
decomposition and reconstruct the 
approximations and part of the details. Re-
filter the signal using the Spectrogram. 

In order to identify S1 and S2 correctly, frequency band 
in which S1 and S2 concentrate should be used. Earlier 
studies [8] show that most information in heart sounds is 
contained in the low frequency components, with noise in 
the higher frequencies. Hence we first use the wavelet 
method to remove those details in higher frequency while 
preserve the main feature as approximation in lower band. 
Before decomposition, the original signal was down 
sampled by a factor of 10. Since the heart sound feature 
with the highest frequency is murmur which is up to 
600Hz [8], the new sampling frequency 4410Hz is still 
more than two times higher. Thus no useful features of 
heart sounds are missed. After down-sampling, we adopt 
a forth-level Order Six Daubechies filter [6] to decompose 
the signal. Then we remove all the details in each level 
and use the approximation whose frequency is below 
288Hz to reconstruct the signal. Finally we use 
Spectrogram to extract signal below 195Hz to further curb 
the noise. 

Step 2: Find the peak location where the amplitude 
and slope exceed the selected threshold. 

Even after pre-processing, the actual heart sound signal 
still has very complicated patterns with numerous small 
spikes that have little impact on diagnosis but may 
influence the location of S1 and S2. Hence we first use a 
“triangular smooth” [9] to smooth the signal. Then we 
calculate the derivatives of each point on the smoothed 
signal. After that, we mark those where the derivatives 
change from positive to negative. For each marked point, 
if the slope (the difference between the derivatives of the 
marked point and the one following it) and amplitude of it 
exceed the selected threshold, we use the polyfit function 
provided by Matlab to fit that point and its neighbourhood 
with parabola [10]. Peak-group is the number of points 
around the top part of the peak that are taken for 
measurement. By adjusting the size of the peak-group we 
can control the number of points around the peaks we 
want to use to fit the spikes, in other words, how detail we 
want to fit the signal. Finally, we pick those points closest 
to the peaks of the fitted parabolas as heartbeat. 
Amplitude threshold, slope threshold and peak-group all 
control peak sensitivity. Higher values will neglect 
smaller features. 

Step3: Reject extra peaks 
The ideal situation is where each spike that we select 
corresponds to one component of heartbeat, S1 or S2. 
However, in case one of S1 and S2 is too weak and to 
preserve the evidence of possible murmur and extra sound 
(extra-systole in Dataset B), we cannot set the threshold 
too harshly, which results in extra peaks. These extra 
peaks can provide useful details in classification but they 
are troublesome in identifying S1 and S2. To eliminate 
the extra peaks, we calculate the intervals between each 
adjacent peak. If two peaks appear within 50ms, which is 
the largest split normal sound interval, we choose the one 
with higher amplitude (in most cases, the real heart spike 
has larger energy than noise). If the interval of two peaks 
is larger than 50ms, we preserve both. By doing so, we 
preserve those with the highest energy and drop most of 
the possible split heart sounds. 

Step3: Identify S1 and S2 
After all the heart spikes have been recognized, we need 
to identify which of them are S1 and which are S2. Here 
our identification is mainly based on the interval. 
According to statistics, the systolic period is relatively 
shorter compared to the diastolic period. Hence we 
compare the mean of every other interval M1 and M2 and 
locate the larger one as the diastolic period and the shorter 
one systolic period. Unfortunately, this feature does not 
always work, especially in the case of children or adults 
with faster heart rates. When the heartbeat is above 
120bpm, the difference between the length of diastolic 
and systolic period is extremely subtle. 

5 Results for Challenge 1 
In Table 1 and Table 2 we present the segmentation 
results for audio files in Normal groups in Dataset A and 
Dataset B, respectively. For precision, the error here is 
measured in samples. The unit of heartbeat is beat per 
minute. 

Table 1 Results for Dataset A 
Dataset A Heart beat Avg Err 
201101070538 11.5 43380.56 
201101151127 10.5 211373.76 
201102081152 5.5 113710 
201102201230 11.5 17118.69 
201102270940 1 1445798.5 
201103101140 9 71534.77 
201103140135 5 314214.6 
201103170121 5.5 299207.54 
201104122156 2.5 509360.4 
201106151236 5 368680 

 
As can be seen, the results for Dataset B are much better 
than those for of Dataset A. The total error of Dataset B is 
75569.78488 while that of Dataset A is 3394378.846. 
This is likely to be because data in Dataset B are collected 



in hospitals by experts under quieter conditions while 
those in Dataset A are produced by non-experts in highly 
variable conditions. 

Table 2 Results for Dataset B 
Dataset B Heart beat AveErr 
103_1305031931979_B 12.5 50.32 
103_1305031931979_D2 10.5 1013. 
106_1306776721273_B1 4 58.75 
106_1306776721273_C2 3 79.33 
106_1306776721273_D1 4 1723 
106_1306776721273_D2 8 4079.31 
107_1305654946865_C1 8 2845.62 
126_1306777102824_B 6.5 12070.76 
126_1306777102824_C 3.5 11024.85 
133_1306759619127_A 4.5 1629.88 
134_1306428161797_C2 2.5 74.8 
137_1306764999211_C 15 72.93 
140_1306519735121_B 13 8556.38 
146_1306778707532_B 19 4813.89 
146_1306778707532_D3 3 37.33 
147_1306523973811_A 5 4242.5 
148_1306768801551_D2 9.5 3393.42 
151_1306779785624_D 4.5 320.77 
154_1306935608852_B1 4.5 62.66 
159_1307018640315_B1 7 3558 
159_1307018640315_B2 3 60.33 
167_1307111318050_A 13.5 2147.88 
167_1307111318050_C 5.5 3416.72 
172_1307971284351_B1 3.5 63.71 
175_1307987962616_B1 2.5 28 
175_1307987962616_D 10.5 7260.52 
179_1307990076841_B 16.5 98.84 
181_1308052613891_D 3.5 1405.71 
184_1308073010307_D 26.5 83.64 
190_1308076920011_D 4.5 1296.11 

6 Heart Sound Classification 
Task 2 aims to produce a method that can classify the 
heartbeat audio into Normal, Murmur, Extra Heart Sound 
for Dataset A and Normal, Murmur and Extra-systole for 
Dataset B. Files Aunlabelledtest and Bunlabelledtest are 
provided to evaluate the performance of the method. 
To classify the heart sound, we mainly depend on the 
number of heartbeat and features of systole and diastole 
period. In Figure 1 we present the flow chart of 
classification for Dataset A. Dataset B follows a similar 
procedure. L1 is the length of the peak sequence before 
extra-peak-rejection and L_s is the length of finally 
selected peak sequence after rejection. M1 and M2 are the 
mean of the systole and diastole period. N denotes the 
number of heartbeats per minute calculated from dividing 
60 by the sum of M1 and M2. Std1 and Std2 are the 
standard deviation of diastole period and systolic period. 
Std12, Std 22, Std13 and Std23 are the new standard 

deviation of diastole and systolic period after dropping the 
smallest interval and the longest interval among the 
finally selected S1 and S2, respectively.  
After segmentation, N is calculated for each sound clip 
first. If N is within the range from 30 to 140 beats per 
minute, the clip goes into the next level of judgement. If 
not, it is labelled as artefact. Though in most cases the 
normal heart rates in the data should vary from 40 to 140 
beats per minute, we find several clips with heart rates 
between 30 and 40. Hence we slightly modify the 
boundary. The next level compares the length of the 
signal before and after extra-peak-rejection. If the L1 is 
more than 3.3 times of L_s, which means other than S1 
and S2 the signal contains a considerable number of 
spikes, we categorize those clips into the Murmur group 
considering: 1. Most of the noise has already been filtered; 
2. The process of curve-fitting would further filter those 
sudden spikes highly likely to be un-filtered noise, which 
indicates most of the leaving spikes are the reflection of 
heart condition. The last level focuses on the mean and 
standard deviation systole and diastole period. If either 
standard deviation is larger than its corresponding mean, 
or either standard deviation drops obviously after 
removing the smallest interval or largest interval, then the 
signal would be classified into Extra sound group. If not, 
then we label them as normal heartbeat.  

7 Results for Challenge 2 
We evaluate our method based on three metrics calculated 
from the TP (true positives), FP (false positives), TN (true 
negatives) and FN (false negatives). They are precision 
for each class, the Youden’s Index, the F-score (for 
Dataset A) and the Discriminant Power (DP) (for Dataset 
B) [11]. Precision estimates the percentage of correctly 
classified samples in result of each class. Youden’s Index 
has traditionally been used to compare diagnostic abilities 
of two tests [11]. Here it evaluates the algorithm’s ability 
to tell artifact sound clips from non-artifact ones. For 
Dataset B the metrics assess the algorithm’s ability to 
differentiate problematic heartbeats (including murmur 
and extra-systole) from normal ones. F-score considers 
both precision and specificity for the artefact group [11]. 
Here F-score is tuned to favour slightly more the 
specificity. In other words, we would rather the algorithm 
mis-classifies non-artefact sound clip as artefact than 
having one that may categorize artefact sound into 
humans heartbeat. DP provides another insight into how 
well the algorithm distinguishes between the algorithm’s 
ability to tell artefact sound clips from non-artefact ones. 
The algorithm is a poor discriminator if DP<1, limited if 
DP<2, fair if DP<3, good in other cases. 
Tables 3 and 4 summarise the results for the challenge. 

We can see from tables 3 and 4 that in Task 2 our 
algorithm stills performs much better in Dataset B, with 
the precision of normal group increasing sharply. Part of 
the reason is the influence of the Task 1. It is clear that the 
real-world noise present in the background of audio files 
for Dataset A present tremendous challenges for 



segmentation and classification, despite the fact that the 
quality of the audio is superior. In both datasets the 
algorithm does not perform well on recognizing the extra 
sound group. In fact, in the test on the training group, 
most of the samples in extra sound group (Extra systole in 
Dataset B) are classified into the normal group. This is 
likely to be because most extra sound clips only have one 
or two abnormal spikes while the rest of them are normal 
ones. 

 

 
Figure 1 Flow chart of Classification for Data set A 

 

 

 

Table 3 Results of classification for Dataset A 

Dataset A 
Precision of Normal 45.83% 
Precision of Murmur 31.25% 
Precision of Extras 11.27% 
Precision of Artifact 58.33% 
Artifact Sensitivity 43.75% 
Artifact Specificity 44.44% 
Youden Index of Artifact -0.0902 
F-score 0.1396 
Total Precision 1.4668 

 

Table 4 Results of classification for Dataset B 

Dataset B 
Precision of Normal 77.67% 
Precision of Murmur 36.99% 
Precision of Extrasound 16.67% 
Heart problem Sensitivity 50.85% 
Heart problem Specificity 58.82% 
Youden Index of Heart problem 0.0967 
Discriminant Power 0.0935 
Total Precision 1.3132 

 

8 Conclusions 
In this paper, we present our approach for a segmentation 
and classification method which would be less sensitive to 
ambient noises and recording locations compared to 
existing methods, and uses the heart sound signal as the 
only source. We found that past algorithms that showed 
good performance on ECG could not properly handle real 
life data. More specifically, the more specialised the 
algorithm, the more unstable when it faces real-world 
heartbeat recordings. To address these issues, in this work 
we create an improved de-noise algorithm by combining 
wavelet and spectrogram. Amplitude and slop thresholds 
are used to control the sensitivity of peak finding. We 
then realign the peaks by exploiting the interval features. 
In the classification part, we exploit domain knowledge 
and compare the features of heartbeat before and after 
dropping out extra peaks and those before and after 
dropping out the smallest interval. By doing so we try to 
minimize the possible effect of excessive noise and 
realize better robustness. We find in both tasks, the 
method works better for Dataset B, which contains data 
with less noise.  

Acknowledgements 
The Classifying Heart Sounds Challenge is sponsored by 
the PASCAL Network of Excellence. 

References 
 [1] The PASCAL Classifying Heart Sounds Challenge 
2011, Bentley P. and Nordehn G. and Coimbra M. and 



Mannor S. Available: http://www.peterjbentley.com/ 
heartchallenge/index.html 
[2] M. W. Groch, J. R. Domnanovich, and W. D.Erwin, 
“A New Heart-Sounds Gating Devices for Medical 
Imaging”, IEEE Trans. On Biomedical Engineering, 
Vol.39, No.3, pp.307-310, March 1992 
[3] S. L. Strunic, F. Rios-Gutierrez, R. Alba-Flores, G. 
Nordehn, S. Burns, “Detection and Classification of 
Cardiac Murmurs using Segmentation Techniques and 
Artificial NeuralNetworks”,  IEEE Symposium on Comp-
utational Intelligence and Data Mining (CIDM), 2007, 
pp.397-404 
[4] G.Karraz, G. Magenes, “Automatic Classification of 
Heartbeats using Neural Network Classifier based on a 
Bayesian Framework”, IEEE, EMBS Annual 
International Conference, New York City, USA, Aug 30-
Sept 3, 2006 
[5]Argyro Kampouraki, George Manis, and Christophoros 
Nikou, “Heartbeat Time Series Classification with 
Support Vector Machines”, IEEE Transformation on 
Information Technology in Biomedicine, Vol. 13, No.4, 
July 2009 
[6] H. Liang, S. Lukkarinen, I. Hartimo, “Heart Sound 
Segmentation Algorithm Based on Heart Sound 
Envelogram”, Computers in Cardiology 1997, September, 
Lund, Sweden 
[7] Cheng Y., “Music Database Retrieval Based on 
Spectral Similarity”, International Symposium on Music 
Information Retrieval (ISMIR) 2001, Bloomington, USA, 
October 2001 
[8] R. M. Rangayyan and R. J. Lehner, “Phonocardiogram 
Signal Analysis: A Review”, CRC Critical Reviews in 
Biomedical Engineering, Vol.15, Issue 3, pp.211-236, 
1988 
[9]Tom O'Haver, “Intro. To Signal Processing: 
Smoothing”, Available: http://terpconnect.umd.edu/~to-
h/spectrum/Smoothing.html 
[10] Polyfit, Available:Http://www.mathworks.co.uk/hel-
p/techdoc/ref/polyfit.html 
[11] Peter A. Flach, “The Geometry of ROC Space: Und-
standing Machine Learning Metrics through ROC Isomet-
rics”, Proceedings of the Twentieth International Confere-
nce on Machine Learning (ICML-2003), Washington DC, 
2003, pp.226-233 


